What do team building exercises and the brain have in common?

Well it is just over 4 months since I initially submitted my Research Project proposal which seems ages ago. It’s 6 weeks since I resubmitted it, hopefully having addressed their conditions and I am chasing things as well now as I am less convinced about the rigour of their processes. ‘Turnitin’ seems to be a black hole that just checks how much of your work is copied from others. I love it when it picks out a phrase like “reaching their potential” and then cites it in some random person’s website. This means that you have to go through and see how much of the 18% ‘copied’ words you need to worry about. On the upside, it has meant that since mid-July I have been able to focus on the bit I love, the neuroscience, rather than writing academic stuff.

I am another 100 pages through the text book and it is fascinating. I have learned about how neurons (probably) grow towards where they need to go as well as learning about all the sensory systems. I am glad I have an electrical engineering degree as I can understand the electrical circuits used within neural firing and their oscillations. Although I never thought I’d have to brush up on this through being a coach.

I like the little side bits I am discovering such as chillies are ‘hot’ because they activate the same receptors as ‘bad heat’ (>43 degrees) which means we quickly do something about it and don’t eat too much. I am assuming this is because in large amounts those chemicals are unhealthy for us. Likewise, menthol activates the cool temperature receptor so it corresponds to our ‘cool’ sensation. I suppose the larger debate is around what do we define as ‘hot’ and ‘cold’ as they are human interpretations. Although very hot and very cold both feel like a ‘burning’ sensation which is probably our word for the ‘my cells are being destroyed’ feeling which is what it comes down to.

In reading about the senses, I get a picture of how each one is so well tuned for the particular aspect that it needs to be alerted to in order for us to survive. So, for vision there are a lot of neural networks to do with edges as these help with movement and speed of movement. Also edges help us see predators hiding. Then there is colour which helps us see what is ok to eat and what is not, as well as predators hiding. It has made me wonder whether very tidy people who are nervous are tidy as it reduces edges and makes the edges aligned. Both of these would make it easier to see threats. Although they are not consciously doing it for those reasons I wonder if that is the underlying survival rationale.

Strengthening the ‘reasoning’ ability of the neural system feels like a useful thing do as it helps the brain to control emotional reactions before they get out of control. Also, I wonder how much more we’d get done at work if there was less fear and anxiety around. Maybe in 100 years that will be the role of a leader or HR.

With sight and sound, spatial maps are recreated in the brain. Visually there appears to be a mapping of retinal receptors to the same layout in the brain. This means neurons from the retina must end up in the same order in the visual cortex and it is amazing how it is thought that they do this. In many ways, it is very simple as they use a lot of chemical repulsion and attraction although given the number of neurons this means that the difference in that is quite subtle.

For example (in a simplistic way), if you had 100 neurons from the left to right side of the retina and the one at the furthest left had the most of Chem A, say 100%. Then the one furthest to the right would have the least amount, say 1%. Each neuron in between from left to right would go from 99% to 2% in a downwards gradient. The neurons they need to connect to, further along pathway towards the brain, also go from left to right but have Chem B with a 1% to 100% upwards gradient from left to right (the opposite way around). If Chem A and B repel each other, then the one with most Chem A (furthest left) will end up connected to the one with least Chem B (furthest left) and so forth. Thus, the neurons connect left to right as they were in the retina, maintaining the spatial representation.

Smell is different. In a frog experiment it appears that a coding system is used. Each odour has a unique neural firing pattern using the same set of neurons (which neuron and with what level of activation). Therefore, you can detect many different smells using fewer neurons and, for odour, a map is less useful than being able to detect lots and lots of different smells. So the brain has to decide how best to use its finite resources and each system seems very well honed to its work.

The ears turn sound waves into movement by using lots of little hairs inside them. The hairs are different heights, like pan pipes, and at the top of each hair is a ‘lidded’ opening. The ‘lid’ has a ‘string’ connected to the taller hair behind it. When sound moves the hairs, the tops of them move further apart thus the ‘string’ pulls the ‘lid’ open and ions enter to enable depolarisation. Movement using the ear canals, is similar although fluid and calcium granules create the hair movement. Should I be amazed or concerned as it’s a bit like a team building exercise solution but without bake bean tins.

Next time I’ll talk about neural oscillations and complex systems as these also seem relevant to ‘the self’ conversation and my DProf.

Is reality just a hallucination we all agree on?

This was the essence of Anil Seth‘s TEDTalk (Sussex University); he’s researching consciousness. It’s worth watching as there are some demos which really hit home the point that we construct the world (reality) in our brains. The sound example gives a whole new meaning to the phrase ‘our interpretation of the world is reality’ or in NLP ‘the map is not the territory; respect others’ maps of the world’. Food for thought for my coaching, as is Damasio’s talk.

This awesome-ness of the brain has been reinforced with my latest reading. I decided I need to understand sentences like “We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE–dependent membrane docking and fusion during exocytosis” if I am going to read primary research papers. So I have two textbooks: Principles of Neurobiology and Foundations of Behavioral Neuroscience Although it means I am reading with a highlighter (to mark key themes), a pen (to write on the page what the big words mean so when I read it next time I’ll know what they are), my phone (to Google what the big words mean) and my Kindle (to take notes which I can store as Word documents). It doesn’t make reading easy and it is very slow as it hurts my brain reading this stuff. But I now have a routine which helps: a short break every 30 minutes and a one hour break every three hours. Currently with the first textbook, I’m 150 pages in on 600.

With some other articles though, I get frustrated that simple everyday words aren’t deemed good enough. Take the wonderfully simple word ‘large’. What’s wrong with that? Everyone gets it and I can easily read a passage with it in. But no, obviously it is not good enough for some people who need to use, or invent, the phrase ‘high-dimensional’. I was seriously tempted to work out how much extra paper and ink was wasted by using ‘high-dimensional’ rather than ‘large’ but pulled myself up as I thought I was probably getting a bit obsessed about it. But throughout the article I had to keep reminding myself that a ‘high-dimensional cavity’ was a ‘large hole’ and a high-dimensional clique’ was a ‘large cluster’ – give me strength, as if this wasn’t hard enough to understand. There could be a sequel to the book, “Why business people speak like idiots”.

And to make it worse, from reading the textbook, I feel as if I know very little and that I should have known this stuff ages ago. But in good coaching style, I’m reframing this to the fact that I am now ready to read this, and it is an exciting read. Exciting because I had not realised what went on inside a neuron. It’s a whole little world of its own.

(For the next bit, I just want to put in a disclaimer: I wanted to tell you a few awesome things about neurons and I have limited knowledge so the next section is to the best of my understanding using analogies. But it is written with my best intentions at heart as I was stunned at the complexity of a neuron and at the fragility of it as well.)

In very simple terms from what I understood (Chapters 1-3 of ‘Principles of Neurobiology’) – There are bits going in and out of the neuron cell’s nucleus. Some bits (cargos) are carried by proteins via ‘microtubules’ (tubes) along the axon or dendrite. At the ends, many thinner helix structures help distribute them to various points. Sounds a lot like a logistics set-up for many online shops! At the axon and dendrite ends a lot happens with one thing leading to another which leads to another. It reminded me of the game Mousetrap where you essentially build a ‘marble run’ composed of many different components: Once built and triggered, various parts flip, roll, spin or fall to trigger the next section and at the end a net falls down trapping the mouse. Well it sounds rather like that – a cell membrane receptor has a protein complex attached to it inside the cell. Outside a neurotransmitter, such as serotonin, attaches to the receptor which changes the protein complex. Part of the changed complex then affects an enzyme which releases a chemical messenger. This goes off to a store of Calcium inside the cell and opens a channel so the calcium comes out into the cell. The increase of calcium inside the cell does a lot of different things, one of which will be resetting the initial protein complex. So, a neuron has at its centre a factory which takes things in and makes new things to send out, a logistics operation using a tube system to distribute things and get stuff back, and many games of Mousetrap which are initiated by elements inside or outside the neuron – simple! I wish.

A final thought: Some neurotransmitters inside the neuron are in little sacs. These sacs are placed close to the cell membrane and are ‘held’ by ‘coils’. These connect to similar coils on the cell membrane. When triggered, both coils pull tight so the sac and membrane move closer together and merge (Fig 1 – B). Then neurotransmitters can leave the cell and go off to other neurons. One way a muscle relaxant works is to disable one of the coils so it cannot pull tight when triggered. Thus the neurotransmitter which signals the muscle to contract does not get released as it should, so the muscle stays relaxed. That is how subtle these chemicals are and this is how delicate or complex our brains are. With thousands of these mechanisms and others in our brains I can start to understand how just the tiniest change can cause major mental problems or alter what we think happened.

Re my Dprof: I now have 60 further level 7 credits for my R&D Capability Claim paper and have resubmitted my Research Proposal.